Tao Sun (孙涛)

alt text 

Associate Professor(副研究员,硕导),
College of Computer, National University of Defense Technology (国防科技大学计算机学院)
Changsha, Hunan, China
I am seeking self-motivated students with strong mathematical skills and/or programming expertise. If you are interested in optimization, please do not hesitate to contact me (没人呀,招人呐).
E-mail:suntao.saltfish@outlook.com; nudtsuntao@163.com(Previous)

About me

I am now an associate professor in a research group led by Prof. Xinwang Liu.

News

Starting in September 2024, I will update the news section to collect the rejection experiences from my academic journey.

2024-11 One paper was rejected by NC.

2024-10 Two papers were rejected by AAAI in the first round.

2024-9 One paper was rejected by NeurIPS, and another was withdrawn before. As a wise person once said, "As long as the withdrawal is done quickly, it won't be rejected." (no reference)

Education

Ph.D., Computational Mathematics, National University of Defense Technology, 12.2018

M.S., Computational Mathematics, National University of Defense Technology, 12.2014

B.S., Applied Mathematics, National University of Defense Technology, 06.2012

Experience

Associate professor, National University of Defense Technology, 12.2022--Now

Assistant professor, National University of Defense Technology, 03.2019--12.2022

Research

My research interests include:

  • Machine Learning

  • Deep Learning

  • Optimization

  • Distributed Learning

Selected Conference Papers

  1. X. Deng**, T. Sun*, S. Li, D. Li*, X. Lu, "Stability and Generalization of Asynchronous SGD: Sharper Bounds Beyond Lipschitz and Smoothness.", NeurIPS, 2024.

  2. X. Pan, X. Li, J. Liu, T. Sun, K. Sun, L. Chen, Z. Qu, "Stability and Generalization for Stochastic Recursive Momentum-based Algorithms for (Strongly-) Convex One to K-Level Stochastic Optimizations.", ICML, 2024.

  3. X. Deng**, T. Sun*, D. Li*, X. Lu, "Exploring the Inefficiency of Heavy Ball as Momentum Parameter Approaches 1.", IJCAI, 2024.

  4. T. Sun, Q. Wang, D. Li, B. Wang, "Momentum Ensures Convergence of SIGNSGD under Weaker Assumptions.", ICML, 2023.

  5. X. Deng**, T. Sun*, S. Li, D. Li*, "Stability-Based Generalization Analysis of the Asynchronous Decentralized SGD.", AAAI, 2023.

  6. T. Sun, D. Li, B. Wang, "Finite-Time Analysis of Adaptive Temporal Difference Learning with Deep Neural Networks." Advances in Neural Information Processing Systems, 2022.

  7. T. Sun, D. Li, B. Wang, "Adaptive Random Walk Gradient Descent for Decentralized Optimization." International Conference on Machine Learning, 2022.

  8. T. Sun, D. Li, B. Wang, "Stability and Generalization of the Decentralized Stochastic Gradient Descent." Proceedings of the AAAI Conference on Artificial Intelligence 35, pp. 9756-9764 2021.

  9. T. Sun, D. Li, Z. Quan, H. Jiang, S. Li, Y. Dou, "Heavy-ball Algorithms Always Escape Saddle Points". Proceedings of the International Joint Conference on Artificial Intelligence, pp.3520-3526, 2019.

  10. T. Sun, P. Yin, D. Li, C. Huang, L. Guan, H. Jiang, "Non-ergodic Convergence Analysis of Heavy-ball Algorithms." Proceedings of the AAAI Conference on Artificial Intelligence 33, pp. 5033-5040, 2019.

  11. T. Sun, Y. Sun, D. Li, Q. Liao, "General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme", Advances in Neural Information Processing Systems 32, 2019.

  12. T. Chen, G. Giannakis, T. Sun, W. Yin, "LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning.", Advances in Neural Information Processing Systems 31, 2018.

  13. T. Sun, Y. Sun, W. Yin, "On Markov Chain Gradient Descent", Advances in Neural Information Processing Systems 31, 2018.

  14. T. Sun, R. Hannah, W. Yin, "Asynchronous Coordinate Descent under More Realistic Assumptions", Advances in Neural Information Processing Systems 30, 2017.

Selected Journal Papers

  1. S. Chen, X. Deng**, D. Xu*, T. Sun*, D. Li, "Decentralized stochastic sharpness-aware minimization algorithm", Neural Networks Journal, 2024.

  2. T. Sun, Q. Wang, Y. Lei, D. Li, and B. Wang, "Pairwise Learning with Adaptive Online Gradient Descent", Transactions on Machine Learning Research, 2023.

  3. T. Sun, D. Li, B. Wang, "On the Decentralized Stochastic Gradient Descent with Markov Chain Sampling", IEEE Transactions on Signal Processing , 2023.

  4. T. Sun, D. Li, B. Wang, "Decentralized Federated Averaging.", IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022.

  5. T. Sun, D. Li, "General Nonconvex Total Variation and Low-Rank Regularizations: Model, Algorithm and Applications.", Pattern Recognition Journal , 2022.

  6. T. Sun, D. Li, "Sign Stochastic Gradient Descents without Bounded Gradient Assumption for the Finite Sum Minimization.", Neural Networks Journal , 2022.

  7. B. Wang#, T. M. Nguyen#, T. Sun#, A. L. Bertozzi, R. G. Baraniuk, S. J. Osher, "Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent.", SIAM J. Imaging Sciences , 2021.

  8. T. Sun, H. Shen, T. Chen, D. Li, "Adaptive Temporal Difference Learning with Linear Function Approximation.", IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021.

  9. T. Sun, L. Qiao, Q. Liao, D. Li, "Novel Convergence Results of Adaptive Stochastic Gradient Descent.", IEEE Transactions on Image Processing, 2020.

  10. T. Sun, L. Qiao, D. Li, "Non-ergodic Complexity of Proximal Inertial Gradient Descents.", IEEE Transactions on Neural Networks and Learning Systems, 2020.

  11. T. Sun, K. Tang, D. Li, "Gradient Descent Learning with Floats.", IEEE Transactions on Cybernetics, 2020.

  12. T. Sun, D. Li, "Capri: Consensus Accelerated Proximal Reweighted Iteration for A Class of Nonconvex Minimizations.", IEEE Transactions on Knowledge and Data Engineering, 2020.

  13. T. Sun, Y. Sun, Y. Xu, W. Yin, "Markov Chain Block Coordinate Descent.", Computational Optimization and Applications, pp. 35-61, 2020.

  14. T. Sun, R. Barrio, M. Rodriguez, H. Jiang, "Inertial Nonconvex Alternating Minimizations for the Image Deblurring.", IEEE Transactions on Image Processing, pp. 6211-6224, 2019.

  15. T. Sun, P. Yin, H. Jiang, W. Zhu, "Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for A Class of Nonconvex Problems.", IEEE Transactions on Signal Processing, pp.5380-5391, 2018.

  16. T. Sun, P. Yin, H. Jiang, L. Cheng, "Alternating Direction Method of Multipliers with Difference of Convex Functions.", Advances in Computational Mathematics, pp.723-744, 2018.

  17. T. Sun, H. Jiang, L. Cheng, "Convergence of Proximal Iteratively Reweighted Nuclear Norm Algorithm for Image Processing.", IEEE Transactions on Image Processing , pp. 5632-5644, 2017.

  18. T. Sun, H. Jiang, L. Cheng, "Global Convergence of Proximal Iteratively Reweighted Algorithm", Journal of Global Optimization, pp. 815-826, 2017.

Note: *indicates the corresponding author, # denotes equal contributions,** denotes my student.

Full list of publications.

Academic service

Action Editors

  • Neural Networks, Elsevier(Starting From 2025)

Reviewer

  • NeurIPS, ICML, ICLR, ECML, TMLR, AAAI, IJCAI, TPAMI

Invited Talks

  • 2020 National Youth Forum on Computational Mathematics (2020 全国计算数学青年论坛)

Others

Grants (Chinese)

  • 湖南省自然科学基金杰出青年科学基金 2022

  • 中国科协青年托举,人工智能学会,科协资助,2022

  • 国自然面上、青年

  • 国防科大拔尖人才计划,2021

  • JF项目两项

Awards (Chinese)

  • CCF优博提名奖2020

  • ACM中国新星奖(长沙分会,排名第一),2023

  • 国防科大青年科技创新奖2023

  • 湖南省优秀博士论文奖2021